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Abstract. We propose a feature extraction method via a novel descrip-
tion and a scalable GPU implementation (the first to our knowledge)
of the 3D scale-invariant feature transform (SIFT). The feature extrac-
tion is first represented as a shallow convolutional neural network with
pre-computed filters, followed by a masked keypoint analysis. We use
the implementation in order to investigate feature extraction for specific
instance identification on natural non-skull-stripped magnetic resonance
image (MRI) neuroimaging data. The proposed implementation is in-
variant to 3D similarity transforms and aims to improve robustness by
reducing noise and bias for image processing convolution operations. We
show interpretable feature visualizations, which help explain the obtained
results. We demonstrate state-of-the-art results in large-scale neuroimage
family indexing experiments on 3D data from the Human Connectome
Project repository, and show significant speed gains compared to a CPU
implementation. The results imply that using feature extraction using
SIFT for neuroimaging analysis can lead to less noisy results without
the need for hard masking during preprocessing. The proposed algorithm
can be applied on arbitrary image modalities and anatomical structures.

1 Introduction

Convolutional neural networks are considered state-of-the-art for medical image
classification problems. Recent advances in computational power and parallel
processing with GPUs have lead to quick and accurate classifiers, particularly in
the presence of a large amount of training data and a small number of classes [9].
However, this does not hold when identifying image pairs in a large medical
imaging cohort, where there is a large number of subjects and a limited number
of samples per subject. In addition, CNNs introduce bias in their filters towards
local object textures in contrast to global object shapes [18], whereas it has
been shown that networks that learn shape-based representations can improve
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robustness, detection performance, and generalization [7]. Third, there is no
standard method for the interpretability of CNNs, resulting in a lack of trust
in these systems from end users [8]. Finally, while segmentation masks are
commonly used to extract structures of interest prior to processing, e.g. brain
masking or ’skull-stripping’ [4, 5, 14, 20, 21], hard masking produces an irregular
and abrupt boundary in the image similar to zero-padding, which introduces
artifacts such as ringing at mask borders [15]. An early study emphasized the
need for reducing noise and bias for convolution operations in the context of
image processing, and demonstrated the benefit of GPU implementations in that
context [12]. Various GPU implementations of 2D SIFT have been proposed [2,
19]. However, extending these to 3D medical image volumes is non-trivial and
has not been done to date, particularly 3D keypoint description, and no work
has described invariant keypoint descriptor correspondence as a massive scale
convolution operation.

This paper addresses the limitations mentioned above by proposing an ef-
ficient GPU Gaussian scale-space feature extraction method for medical image
analysis. A novel representation of 3D SIFT as a shallow convolutional neural
network with pre-computed filters (SIFT-CNN) is shown for extracting visual-
izable and interpretable keypoints with powerful shallow information in image
data. We show that the backbone of the SIFT algorithm is a single channel
Gaussian CNN, i.e. the Gaussian scale-space generated via recursive Gaussian,
and can be generated efficiently via separable filters. These features are designed
to be rotation invariant [11] and thus are robust against rotation bias. We use
these features in a keypoint masking process on medical image data. Keypoints
are first extracted on an entire image, and those outside the masks of the struc-
tures of interest are then discarded for future analysis. This helps avoid linear
filtering artifacts due to sharp boundaries that would normally affect any linear
filtering system including CNN or SIFT.

SIFT features [13] have shown to be efficient at image matching applica-
tions. Toews and Wells [22] developed a 3D-SIFT-Rank keypoint method and
demonstrated its usefulness in identifying MRI pairs of siblings using the Jaccard
measure of overlap on skull-stripped images. The resulting signatures require lit-
tle memory usage and can thus be used on a large dataset. A recent study [3]
used the 3D-SIFT-Rank keypoints in order to extract signatures of individu-
als and subsequently identify MRIs of siblings. This method was the first to
detect subject duplication errors in the ADNI and OASIS cohorts. Keypoint
extraction requires on the order of seconds per image, the keypoint data are
approximately 100x smaller than the original image, and highly efficient near-
est neighbor keypoint indexing may be computed in O(logN) complexity in the
number of keypoints N via approximate nearest neighbor search [16].

Similarly to the work in [3], we show the effectiveness of our proposed key-
point masking algorithm in identifying similarities between image pairs, particu-
larly due to family relationships, and compare it to previously obtained results on
skull-stripped brain volumes. In order to allow for further speedups, the feature
extraction is performed using a 3D graphics processing unit (GPU) SIFT imple-
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mentation which results in an approximate 7x speedup compared to the CPU
implementation. The contributions of our work can be summarized as follows:

– A robust method for Gaussian feature extraction in scale-space followed by
keypoint masking via shallow CNN with precomputed filters

– A scalable GPU implementation of 3D SIFT which offers an approximate
7x speedup compared to the CPU implementation, which to our knowledge
has not been done to date.

– Application of interpretable keypoint masking in order to classify all brain
MRIs of the same family from a large dataset using with state of the art
results for brain indexing.

– The first application keypoint transfer segmentation on brain MRI data.

2 Method

Methods here are two-fold. First, we present a solution to convolution filter bias
and noise via an adaptation of Gaussian scale-space theory [11] to the GPU
architecture widely used in deep CNN processing. Second, we propose an ROI
analysis strategy, where neuroimage features are extracted from natural images
without the limits of hard boundaries, followed by selection of feature points
that lie within a ROI for further analysis.

2.1 Gaussian Scale-Space Filtering on the GPU

Let x ∈ R3 represent a 3D coordinate system, and let Ix : R3 → R1 represent
a scalar image. Scale-space theory seeks to model the image in a manner inde-
pendent of the image resolution, with defined continuous Gaussian convolutions:
Iσ,x : R4 → R1 = Ix ∗Gσ, where Gσ is a Gaussian filter defined by pixel scale σ.
The Gaussian filter is shown to be the only filter satisfying a number of axioms,
including non-creation and non-enhancement of spurious local maxima and pro-
viding both an unbiased visual front end due rotational symmetry, and a means
of computing scale-normalized derivative operators. In contrast, filters resulting
from typical CNN training via stochastic backpropagation [10] are not invariant
to image scaling or rotation and highly biased towards training data.

We propose integrating the Gaussian scale-space (GSS) directly into deep
CNN filtering on the GPU, thereby limiting bias or image artifacts. Figure 1
shows our GPU implementation of the widely-used scale-invariant feature trans-
form (SIFT) algorithm [13] based on 3D SIFT-Rank [22]. A detailed description
is beyond the scope of this paper and is provided along with full source code 4.
Several notable details are as follows. The GSS is shown in Figure 1 a), where
scale is sampled in constant multiplicative increments k : σi+1 = kσi in order to
remain invariant to scale change. Each sample Iσ,x may be generated via a single
convolution of the input Ix (and thus remains a ’shallow’ filtering operation), a
more computationally efficient strategy is recursive filtering Iσi+1,x = Iσi,x ∗Gσ′ ,
in which case the GSS can be viewed as a ’deep’ CNN with pre-defined filters.

4 anonymous link to code
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Fig. 1. The SIFT algorithm as a deep CNN. The Gaussian scale-space a) may be
viewed as a deep CNN filtering process. Parallel networks approximate b) a Laplacian-
of-Gaussian saliency operator as a difference-of-Gaussian (DoG) operation, where local
saliency maxima {xi, σi} c) define the locations and scales of discrete scale-invariant
keypoints representing informative, localizable image patches. Local scale-normalized
image gradients d) are used to determine local keypoint orientation θi ∈ R3 and are
sampled and normalized local keypoint descriptor templates {fi}. Finally, e) peaks of
convolution between the query image an a large bank of training descriptor templates
{fj} can be efficiently detected via nearest neighbor search, as the Euclidean distance
between normalised descriptors ‖fj − fj‖ is a monotonically decreasing function of the
scalar product fj · fi. Scale space is sampled here at 3 equal multiplicative increments,
similar to tones of an augmented triad in twelve-tone equal tempered musical scale.

Convolution via descriptor templates can be viewed as an evaluation of a
scalar product evaluated at points on the geometrical lattice, for example the
{x,Θ, σ} ∈ R7 coordinate space of 3D similarity transforms. Minimizing the
distance between the normalized descriptors is equivalent to maximizing the
convolution.

2.2 Masked Keypoint Analysis

Neuroimage datasets are often skull-stripped prior to processing, applying brain
ROI masks in order to restrict analysis to data arising from neuroanatomical
parenchyma as opposed to extraneous tissues such as skull, etc. Nevertheless,
segmentation algorithms may produce variable or noisy results along the seg-
mentation boundary, even for different images of the same subject. These hard,
irregular boundaries generally exhibit unfavorable signal processing character-
istics, e.g. Gibbs phenomenon, that may impact convolution responses, both in
the cases of shallow Gaussian filters and via deep CNN filters. Recent solutions
have investigated difference-of-Gaussian filtering to counter input bias [1], or
conditional random field regularization of output noise [25].
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We thus propose a new approach to neuroimage processing, particularly use-
ful in the case of local keypoint analysis, as illustrated in Figure 2 a) which
illustrates typical processing of skull-stripping pipeline, where image features
extracted from a skull-stripped neuroimage may represent spurious, noisy con-
tent. We propose instead extracting features in natural image space and then
use brain masks to separate keypoints present in the brain from others.

(a) Skull-stripped Keypoints (b) Masked Keypoints (proposed method)

Fig. 2. Illustrating a) Skull-stripped keypoint analysis, where skull-masking prior to
filtering may lead to artifacts. b) Keypoint masking, where keypoints are extracted in
natural image data, then filtered according to a mask. Transform T is a robust image-
to-atlas similarity transform determined via feature-based alignment [22], and T−1 is
used to transform an existing atlas brain mask to image space in a manner equivalent
to keypoint transfer segmentation [24], except here the mask applied to filter keypoints
rather than to mask image intensity data.

3 Experiments

3.1 Data

The dataset used in this experiment is a subset of 1010 subjects from the Human
Connectome Project [23] Q4 release containing 439 unique families, including
some unrelated subjects (see table 3.1). T1-weighted MR images have been ac-
quired between 2012-2015 on a 3T MR scanner, at a 0.7mm isotropic resolution.
Through the Freesurfer pipeline [6], images have been registered to the MNI
space, brain masks have been generated, and images have been resampled to
a 1.25mm isotropic resolution, as well as corrected for image artefacts such as
eddy-currents and head-motion. Keypoints are extracted from individual images,
numbers of keypoints per method is shown in table 3.1 .

3.2 Processing

We compare methods of keypoint extraction (see figure 1). Skull-stripped key-
points are generated by masking a brain volume with its mask, then extracting
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Table 1. HCP demographic
information

Image number 1010

age 29± 13

male 468
female 542

Full siblings (FS) 607
Dizygotic Twins (DZ) 71
Monozygotic Twins (MZ) 134

Table 2. Average number of keypoints ex-
tracted and pairwise correspondence counts.

methods # keypoints corres.

0.7 mm
skull-stripped 1468± 189 233.8
masked 1662± 241 264.8
original 2102± 277 335.4

1.25 mm
skull-stripped 180± 34 28.9
masked 253± 54 40.8
original 334± 60 53.8

keypoints from the resulting image. Masked keypoints are generated by extract-
ing keypoints from the original brain volume, then using a brain mask to filter
non-brain keypoints outside of the mask. We hypothesize masked keypoints will
result in improved performance in indexing experiments, as they are not subject
to irregular segmentation boundaries.

Our evaluation replicates the methodology of Chauvin et al. [3], measuring
the effectiveness of each method at classifying relationships between subject
pairs. We will use 1010 subjects from the HCP dataset instead of the 7536
originally used. A pairwise comparison is done measuring the Jaccard overlap
(eq. 1) of each of the

(
N
2

)
= N(N − 1)/2 image pairs. It is a measure of the

proportion of the keypoint correspondences shared an image pair [3]:

J(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
, (1)

where |A∩B| represents the number of keypoint correspondences between image
pair (A,B). Each class of relationships between pairs has a distinct Jaccard
coefficient distribution that enables us to classify the relationship with a Jaccard
coefficient threshold.

3.3 Keypoint extraction performance

Figure 3 a) shows a comparison of average computation times between a CPU
and our GPU implementation for each processing step in the keypoint extraction
process using a set of 1010 brain volumes. Overall, the GPU implementation
results in an approximate 7x speedup. The biggest speedups observed were for
the Gaussian scale-space (20X), saliency maxima (3X), sub-sampling (3X), and
saliency operator (2X).

3.4 Keypoint visualisation

Figure 4 shows a saggittal brain MRI slice with original and skull-stripped
keypoints. Matches between keypoints can be visualized and subsequently in-
terpreted, and validated: Matches and non-matches between the keypoints are
represented by different colored circles. Most matches between the two sets of
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(a) CPU vs. GPU time (b) ROC curves

Fig. 3. Illustrating a) Comparison between average CPU and GPU processing times
(in microseconds) for each processing step in the keypoint extraction process. b) ROC
curves for relationship classification between pairs using a Jaccard score threshold
(0.7mm resolution).

keypoints are further inwards from the mask edge, and most unmatched key-
points are closer to the edge of the brain. There is significantly more keypoints
on the non-skull-stripped image, most of which can be found on the cortex.

Fig. 4. Visualizing keypoints (circles) in original (left) and skull-stripped (right) im-
ages. Keypoints present in both images are shown as green (left), unique to original
image as blue (left) and unique to skull-stripped image as red (right). Keypoint mask-
ing generally identifies additional keypoints located primarily on the cortex in regions
affected by boundary artifacts.

Across all images at 0.7mm resolution, 85% of the skull-stripped keypoints
matched with the original keypoints of the same image, while at a 1.25 mm
resolution, 75% of the skull-stripped keypoints matched with the original key-
points. To test our hypothesis that the percentage of matches scales with the
volume of the mask, we modeled the brain as a sphere of keypoints, with it’s
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volume being the total number of skull-stripped keypoints and the surface being
the skull-stripped keypoints that did not match. Using this model, we predicted
that 86% of the skull-stripped keypoints will match at 0.7mm resolution using
the 1.25mm data. This is a simple model accurately representing our intuition
that the border interference effect is dependent on the size of the mask.

3.5 HCP Family Relationship Classification

We performed experiments to measure the pairwise similarity between 1010
subjects from the HCP dataset using the Jaccard overlap score introduced in
[3] following the same method. In the original article, skull-stripped keypoints
at 0.7mm resolution were used. We compared the ability to find relationships
between subjects pairs using original, masked, and skull-stripped keypoints at
both 0.7mm and 1.25mm resolutions. The figure 3 b) shows ROC curves for the
masked and skull-stripped representations at 0.7mm. Though the area under the
curve (AUC) is similarly very high for MZ cases using masked and skull-stripped
points, a higher AUC is observed in the case of FS and DZ using the masked
points when compared to the skull-stripped points. Unlike previous work, the
proposed masked method also leads to statistically significant differences be-
tween DZ and FS brain similarity at a 1.25mm resolution. This may be because
we have never been able to observe cortical morphology in this amount of detail,
due to skull-stripping noise.

Table 3. AUC values for different keypoint representations and resolutions

keypoints FS DZ MZ

0.7 mm
skull-stripped 0.865 0.909 0.999
masked (ours) 0.889 0.926 0.999
original 0.931 0.970 0.999

1.25 mm
skull-stripped 0.824 0.851 0.991
masked (ours) 0.858 0.905 0.998
original 0.889 0.950 0.998

Table 3.5 compares relationship classification using original, masked, and
skull-stripped keypoints at different resolutions. Using masked keypoints results
in higher AUC than skull-stripped keypoints for any relationship at both reso-
lutions. The increase in AUC is amplified at a lower resolution, because a higher
fraction of the skull-stripped keypoints are affected by the brain mask.

4 Conclusion

We presented a fast GPU-based method for keypoint extraction based on a
Gaussian scale space and ROI masking. The proposed method is the first GPU
implementation of 3D SIFT, is invariant to 3D similarity transforms, offers a
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solution to convolution filter bias and circumvents limitations introduced by
hard boundaries typically present in neuroimaging analysis, and is interpretable.
Analysis using this method led to improvements to the current state-of-art for
family indexing on a large cohort of 3D MRI data, and to significant speedups
compared to a CPU implementation. This method can be used in medical image
analysis studies with a variety of image modalities and anatomical structures.

Our analysis opens various venues for future technological advancements.
Keypoint networks can be trained for specific tasks [17, 26] but a challenge will
be coping with bias towards training data. While the majority of CNN implemen-
tations are limited to translation invariant convolution via brute force convolu-
tion over the 3-parameter space of 3D translations, we demonstrate that nearest
neighbor correspondences between normalized descriptors achieve convolution
peaks across 7-parameter 3D similarity transforms, thus offering a mechanism
to achieve invariance to orientation and scaling within the CNN framework.
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